4,390 research outputs found

    Discrete Logarithms in Generalized Jacobians

    Full text link
    D\'ech\`ene has proposed generalized Jacobians as a source of groups for public-key cryptosystems based on the hardness of the Discrete Logarithm Problem (DLP). Her specific proposal gives rise to a group isomorphic to the semidirect product of an elliptic curve and a multiplicative group of a finite field. We explain why her proposal has no advantages over simply taking the direct product of groups. We then argue that generalized Jacobians offer poorer security and efficiency than standard Jacobians

    Efficient algorithms for pairing-based cryptosystems

    Get PDF
    We describe fast new algorithms to implement recent cryptosystems based on the Tate pairing. In particular, our techniques improve pairing evaluation speed by a factor of about 55 compared to previously known methods in characteristic 3, and attain performance comparable to that of RSA in larger characteristics.We also propose faster algorithms for scalar multiplication in characteristic 3 and square root extraction over Fpm, the latter technique being also useful in contexts other than that of pairing-based cryptography

    More Discriminants with the Brezing-Weng Method

    Get PDF
    The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number

    Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle

    Get PDF
    Although it has long been assumed that the glacial–interglacial cycles of atmospheric CO2 occurred due to increased storage of CO2 in the ocean, with no change in the size of the active carbon inventory, there are signs that the geological CO2 supply rate to the active pool varied significantly. The resulting changes of the carbon inventory cannot be assessed without constraining the rate of carbon removal from the system, which largely occurs in marine sediments. The oceanic supply of alkalinity is also removed by the burial of calcium carbonate in marine sediments, which plays a major role in air–sea partitioning of the active carbon inventory. Here, we present the first global reconstruction of carbon and alkalinity burial in deep-sea sediments over the last glacial cycle. Although subject to large uncertainties, the reconstruction provides a first-order constraint on the effects of changes in deep-sea burial fluxes on global carbon and alkalinity inventories over the last glacial cycle. The results suggest that reduced burial of carbonate in the Atlantic Ocean was not entirely compensated by the increased burial in the Pacific basin during the last glacial period, which would have caused a gradual buildup of alkalinity in the ocean. We also consider the magnitude of possible changes in the larger but poorly constrained rates of burial on continental shelves, and show that these could have been significantly larger than the deep-sea burial changes. The burial-driven inventory variations are sufficiently large to have significantly altered the ÎŽ13C of the ocean–atmosphere carbon and changed the average dissolved inorganic carbon (DIC) and alkalinity concentrations of the ocean by more than 100&thinsp;”M, confirming that carbon burial fluxes were a dynamic, interactive component of the glacial cycles that significantly modified the size of the active carbon pool. Our results also suggest that geological sources and sinks were significantly unbalanced during the late Holocene, leading to a slow net removal flux on the order of 0.1&thinsp;PgC&thinsp;yr−1 prior to the rapid input of carbon during the industrial period.</p

    The Unlock Project: A Python-based framework for practical brain-computer interface communication “app” development

    Get PDF
    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software “app” development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50–60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis

    Reaction physics and mission capabilities of the magnetically insulated inertial confinement fusion reactor

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76048/1/AIAA-25451-882.pd

    Increasing human dominance of tropical forests

    Get PDF
    Tropical forests house over half of Earth’s biodiversity and are an important influence on the climate system. These forests are experiencing escalating human influence, altering their health and the provision of important ecosystem functions and services. Impacts started with hunting and millennia-old megafaunal extinctions (Phase I), continuing via low-intensity shifting cultivation (Phase II), to today’s global integration (Phase III), dominated by intensive permanent agriculture, industrial logging, and attendant fires and fragmentation. Such ongoing pressures together with an intensification of global environmental change may severely degrade forests in the future (Phase IV, global simplification) unless new ‘development without destruction’ pathways are established alongside climate change resilient landscape designs

    Antimatter-driven fusion propulsion scheme for solar system exploration

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76531/1/AIAA-23527-891.pd

    Pasture Land Management System Decision Support Software

    Get PDF
    Controlled or rotational grazing provides benefits to producers and society through profitable and sound management of grazing land and livestock. Pasture land management system (PLMS) is a decision support system developed to help university, government, and professionals provide technical pasture management assistance to beef and dairy producers. The PLMS focuses on the balance between seasonal forage supply and nutrient demand in a dairy or beef cattle operation. It allows users to explore and compare alternatives (dividing fields into multiple paddocks, changing stocking rates, and forage species) through a visual display and embedded simulation. Users enter a description of the farm by drawing a map. Maps can be drawn freehand, traced over a scanned image, or GIS data may be incorporated. Once map and field data are entered the grazing options are specified via input screens. Grazing systems can be easily compared without economic risk and with almost immediate feedback on how these alternative systems affect variables like milk production and pounds of beef sold. PLMS serves as both an educational tool and a strategic planning tool for evaluating alternative grazing operations and management related investments (website: http://clic.cses.vt.edu/PLMS/)

    Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

    Get PDF
    We develop an abstract framework that encompasses the key properties of bilinear groups of composite order that are required to construct secure pairing-based cryptosystems, and we show how to use prime-order elliptic curve groups to construct bilinear groups with the same properties. In particular, we define a generalized version of the subgroup decision problem and give explicit constructions of bilinear groups in which the generalized subgroup decision assumption follows from the decision Diffie-Hellman assumption, the decision linear assumption, and/or related assumptions in prime-order groups. We apply our framework and our prime-order group constructions to create more efficient versions of cryptosystems that originally required composite-order groups. Specifically, we consider the Boneh-Goh-Nissim encryption scheme, the Boneh-Sahai-Waters traitor tracing system, and the Katz-Sahai-Waters attribute-based encryption scheme. We give a security theorem for the prime-order group instantiation of each system, using assumptions of comparable complexity to those used in the composite-order setting. Our conversion of the last two systems to prime-order groups answers a problem posed by Groth and Sahai
    • 

    corecore